ON MAGNETIC CURVES IN THE 3-DIMENSIONAL HEISENBERG GROUP

CIHAN ÖZGÜR

Abstract. We consider normal magnetic curves in 3-dimensional Heisenberg group H_3. We prove that γ is a normal magnetic curve in H_3 if and only if it is a geodesic obtained as an integral curve of e_3 or a non-Legendre slant circle or a Legendre helix or a slant helix. We obtain the parametric equations of normal slant magnetic curves in 3-dimensional Heisenberg group H_3.

1. Introduction

Let (M, g) be a Riemannian manifold and F a closed 2-form. Then F is called a magnetic field (see [1], [2] and [8]) if it is associated by the relation

$$g(\Phi X, Y) = F(X, Y), \quad \forall X, Y \in \chi(M) \quad (1.1)$$

to the Lorentz force Φ which is defined as a skew symmetric endomorphism field on M. Let ∇ be the Levi-Civita connection associated to the metric g and $\gamma : I \to M$ a smooth curve. Then γ is called a magnetic curve or a trajectory for the magnetic field F if it is solution of the Lorentz equation

$$\nabla_{\gamma'(t)} \gamma'(t) = \Phi(\gamma'(t)). \quad (1.2)$$

The Lorentz equation generalizes the equation of geodesics. A curve which satisfies the Lorentz equation is called magnetic trajectory. It is well-known that the magnetic curves have constant speed. When the magnetic curve γ is arc length parametrized, it is called a normal magnetic curve [9].

In [4], magnetic curves in Sasakian 3-manifolds were considered. In [15], the classification of Killing magnetic curves in $S^2 \times \mathbb{R}$ was given. In [16], the authors prove that a normal magnetic curve on the Sasakian sphere S^{2n+1} lies on a totally geodesic sphere S^3. In [9], magnetic curves in a $(2n + 1)$-dimensional Sasakian manifold was studied. In [6], Killing magnetic curves in three-dimensional almost paracontact manifolds were considered. In [14], magnetic curves on flat para-Kähler manifolds were studied. In [18], magnetic curves in 3D semi-Riemannian manifolds was considered. In [13], magnetic trajectories in an almost contact metric manifold \mathbb{R}^{2N+1} were studied. Magnetic curves in cosymplectic manifolds were studied in [10]. Periodic magnetic curves in Berger spheres were considered in [12]. Some closed magnetic curves on a 3-torus were investigated in [17].
Moreover, in [19], Legendre curves in 3-dimensional Heisenberg group were investigated.

Motivated by the above studies, in the present paper, we consider normal magnetic curves in 3-dimensional Heisenberg group H_3. We prove that γ is a normal magnetic curve in H_3 if and only if it is a geodesic obtained as an integral curve of e_3 or a non-Legendre slant circle with curvature $\kappa = |q| \sin \alpha$ and of constant contact angle $\alpha = \arccos\left(-\frac{\lambda^2}{2q}\right)$, where $-\frac{\lambda^2}{2q} \in [-1, 1]$ or a Legendre helix with $\kappa = |q|$ and $\tau = \frac{\lambda}{2}$ or a slant helix with $\kappa = |q| \sin \alpha$ and $\tau = \frac{\lambda}{2} + \cos \alpha$. Moreover, we obtain the parametric equations of normal slant magnetic curves in 3-dimensional Heisenberg group H_3.

2. Preliminaries

Let $M^{2n+1} = (M, \varphi, \xi, \eta, g)$ be an almost contact metric manifold and Ω the fundamental 2-form of M^{2n+1} defined by

$$\Omega(X, Y) = g(\varphi X, Y). \quad (2.1)$$

If $\Omega = d\eta$, then M^{2n+1} is called a contact metric manifold [3].

The magnetic field Ω on M^{2n+1} can be defined by

$$F_q(X, Y) = q\Omega(X, Y),$$

where X and Y are vector fields on M^{2n+1} and q is a real constant. F_q is called the contact magnetic field with strength q [13]. If $q = 0$ then the magnetic curves are geodesics of M^{2n+1}. Because of this reason we shall consider $q \neq 0$ (see [4] and [9]).

From (2.1) and (1.1), the Lorentz force Φ associated to the contact magnetic field F_q can be written as

$$\Phi_q = q\varphi.$$

So the Lorentz equation (1.2) can be written as

$$\nabla_{\gamma'(t)} \gamma'(t) = q\varphi(\gamma'(t)), \quad (2.2)$$

where $\gamma : I \subseteq R \to M^{2n+1}$ is a smooth curve parametrized by arc length (see [9] and [13]).

The Heisenberg group H_3 can be viewed as \mathbb{R}^3 provided with Riemannian metric

$$g_{H_3} = dx^2 + dy^2 + \eta \otimes \eta,$$

where (x, y, z) are standard coordinates in \mathbb{R}^3 and

$$\eta = dz + \frac{\lambda}{2} (y dx - x dy),$$

where λ is a non-zero real number. If $\lambda = 1$, then the Heisenberg group H_3 is frequently referred as the model space Nil_3 of the Nil geometry in the sense of Thurston [20]. The Heisenberg group is a multiplicative group, and this is essential for the construction of a left-invariant orthonormal basis. The readers would acknowledge to know the expression of the product. Since $\lambda \neq 0$, the 1-form η satisfies $d\eta \wedge \eta = -\lambda dx \wedge dy \wedge dz$. Hence η is a contact form. In [11], J.
Inoguchi obtained the Levi-Civita connection ∇ of the metric g with respect to the left-invariant orthonormal basis

$$e_1 = \frac{\partial}{\partial x} - \frac{\lambda y}{2} \frac{\partial}{\partial z}, \quad e_2 = \frac{\partial}{\partial y} + \frac{\lambda x}{2} \frac{\partial}{\partial z}, \quad e_3 = \frac{\partial}{\partial z}. \tag{2.3}$$

He obtained

$$\nabla_{e_1} e_1 = 0, \quad \nabla_{e_1} e_2 = \frac{\lambda}{2} e_3, \quad \nabla_{e_1} e_3 = -\frac{\lambda}{2} e_2,$$

$$\nabla_{e_2} e_1 = -\frac{\lambda}{2} e_2, \quad \nabla_{e_2} e_2 = 0, \quad \nabla_{e_2} e_3 = \frac{\lambda}{2} e_1, \quad \nabla_{e_3} e_1 = -\frac{\lambda}{2} e_2, \quad \nabla_{e_3} e_2 = \frac{\lambda}{2} e_1, \quad \nabla_{e_3} e_3 = 0. \tag{2.4}$$

We also have the Heisenberg brackets

$$[e_1, e_2] = \lambda e_3, \quad [e_2, e_3] = [e_3, e_1] = 0.$$

Let φ be the $(1, 1)$-tensor field defined by $\varphi(e_1) = e_2, \varphi(e_2) = -e_1$ and $\varphi(e_3) = 0$. Then using the linearity of φ and g we have

$$\eta(e_3) = 1, \quad \varphi^2(X) = -X + \eta(X)e_3, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y).$$

We also have

$$d\eta(X, Y) = \frac{\lambda}{2} g(X, \varphi Y)$$

for any $X, Y \in \chi(M)$. Then for $\xi = e_3, (\varphi, \xi, \eta, g)$ defines an almost contact metric structure on H_3. If $\lambda = 2$, then (φ, ξ, η, g) is a contact metric structure and the Heisenberg group H_3 is a Sasakian space form of constant holomorphic sectional curvature -3 (see [11]). For arbitrary $\lambda \neq 0$, we do not work in contact Riemannian geometry. However, the fundamental 2-form is closed and hence it defines a magnetic field.

Let $\gamma: I \to H_3$ be a Frenet curve parametrized by arc length s. The contact angle $\alpha(s)$ is a function defined by $\cos\alpha(s) = g(T(s), \xi)$. The curve γ is said to be slant if its contact angle $\alpha(s)$ is a constant [7]. Slant curves of contact angle $\frac{\pi}{2}$ are traditionally called Legendre curves [3].

For $(H_3, \varphi, \xi, \eta, g)$, the Lorentz equation (1.2) can be written as

$$\nabla_{\gamma'}(t)\gamma'(t) = q\varphi(\gamma'(t)), \tag{2.5}$$

(see [9]).

3. Magnetic Curves in 3-dimensional Heisenberg Group H_3

Let $\gamma: I \to H_3$ be a curve parametrized by arc length. We say that γ is a Frenet curve if one of the following three cases holds:

i) γ is of osculating order 1. In this case, $\nabla_{\gamma'}\gamma' = 0$, which means that γ is a geodesic.

ii) γ is of osculating order 2. In this case, there exist two orthonormal vector fields $T = \gamma', \ N$ and a positive function κ (curvature) along γ such that $\nabla_T T = \kappa N, \nabla_T N = -\kappa T$.

iii) γ is of osculating order 3. In this case, there exist three orthonormal vector fields $T = \gamma', \ N, B$ and a positive function κ (curvature) and τ (torsion) along γ such that

$$\nabla_T T = \kappa N,$$

$$\nabla_T N = -\kappa T + \tau B,$$
\(\nabla_T B = -\tau N, \)

where \(\kappa = \|\nabla_T T\| \). A circle is a Frenet curve of osculating order 2 such that \(\kappa \) is a non-zero positive constant; a helix is a Frenet curve of osculating order 3 such that \(\kappa \) and \(\tau \) are non-zero constants (see [19]).

Theorem 3.1. Let \((H_3, \varphi, \xi, \eta, g)\) be the Heisenberg group and consider the contact magnetic field \(F_q \) for \(q \neq 0 \) on \(H_3 \). Then \(\gamma \) is a normal magnetic curve associated to \(F_q \) in \(H_3 \) if and only if

i) \(\gamma \) is a geodesic obtained as an integral curve of \(e_3 \) or

ii) \(\gamma \) is a non-Legendre circle with curvature \(\kappa = |q| \sin \alpha \) and of constant contact angle \(\alpha = \arccos \left(\frac{\lambda}{2q} \right) \), where \(-\frac{\lambda}{2q} \in [-1,1] \) or

iii) \(\gamma \) is a Legendre helix with \(\kappa = |q| \) and \(\tau = \frac{\lambda}{2} \) or

iv) \(\gamma \) is a slant helix with \(\kappa = |q| \sin \alpha \) and \(\tau = \frac{\lambda}{2} + q \cos \alpha \), where \(\alpha \) is a constant such that \(\alpha \in (0, \pi) \).

Proof. If the magnetic curve \(\gamma \) is a geodesic, then \(\varphi T = 0 \), which means that \(T \) is collinear to \(e_3 \). Then being unitary we must have \(T = \mp e_3 \). So \(\gamma \) is a geodesic obtained as an integral curve of \(\xi \).

Since \(\gamma \) is parametrized by arc-length, we can write

\[
T = \sin \alpha \cos \beta e_1 + \sin \alpha \sin \beta e_2 + \cos \alpha e_3,
\]

where \(\alpha = \alpha(s) \) and \(\beta = \beta(s) \). Using (2.4) we have

\[
\nabla_T T = \left(\alpha' \cos \alpha \cos \beta - \sin \alpha \sin \beta \left(\beta' - \lambda \cos \alpha \right) \right) e_1
\]
\[
+ \left(\alpha' \cos \alpha \sin \beta + \sin \alpha \cos \beta \left(\beta' - \lambda \cos \alpha \right) \right) e_2
\]
\[
- \alpha' \sin \alpha e_3.
\]

(3.2)

On the other hand, by the use of (3.1), it follows that

\[
\varphi T = -\sin \alpha \sin \beta e_1 + \sin \alpha \cos \beta e_2.
\]

(3.3)

Since \(\gamma \) is a magnetic curve

\[
\nabla_T T = q\varphi(T),
\]

which gives us

\[
\alpha' \cos \alpha \cos \beta - \sin \alpha \sin \beta \left(\beta' - \lambda \cos \alpha \right) = -q \sin \alpha \sin \beta,
\]

(3.4)

\[
\alpha' \cos \alpha \sin \beta + \sin \alpha \cos \beta \left(\beta' - \lambda \cos \alpha \right) = q \sin \alpha \cos \beta,
\]

(3.5)

\[
\alpha' \sin \alpha = 0.
\]

(3.6)

From (3.6), we find \(\alpha' = 0 \) or \(\sin \alpha = 0 \). If \(\sin \alpha = 0 \), then \(\varphi T = 0 \). So by the discussion of the beginning of the proof, it follows that \(\gamma \) is a geodesic obtained as an integral curve of \(e_3 \). If \(\alpha' = 0 \), then \(\alpha \) is a constant, this means that \(\gamma \) is a slant curve. So we can assume that \(\sin \alpha > 0 \), which means that \(\alpha \in (0, \pi) \).

Since \(\alpha \) is a constant, from (3.4) or (3.5), we obtain \(\beta' - \lambda \cos \alpha = q \). Hence

\[
\beta(s) = (\lambda \cos \alpha + q) s + c,
\]

(3.7)

where \(c \) is an arbitrary real number.

Substituting \(\alpha' = 0 \) and \(\beta' - \lambda \cos \alpha = q \) into (3.2), we find

\[
\nabla_T T = -q \sin \alpha \sin \beta e_1 + q \sin \alpha \cos \beta e_2.
\]

(3.8)
Now let \(\{T, N, B\} \) denote the Frenet frame of \(\gamma \). Since \(\nabla_T T = \kappa N \), from (3.8) we obtain
\[
\kappa = |q| \sin \alpha = \text{constant.} \tag{3.9}
\]
By (3.8) and (3.9), it follows that
\[
N = \text{sgn}(q) \left(-\sin \beta e_1 + \cos \beta e_2 \right). \tag{3.10}
\]
Then by the use of (3.10), (2.4) and \(\beta' - \lambda \cos \alpha = q \), we find
\[
\nabla_T N = \text{sgn}(q) \left(-\cos \beta \left(\frac{\lambda}{2} \cos \alpha + q \right) e_1 \right.
\]
\[
\left. -\sin \beta \left(\frac{\lambda}{2} \cos \alpha + q \right) e_2 + \frac{\lambda}{2} \sin \alpha e_3 \right). \tag{3.11}
\]
Now we define the cross product \(\times \) by \(e_1 \times e_2 = e_3 \) and we compute \(B = T \times N \). Then we obtain
\[
B = \text{sgn}(q) \left(-\cos \alpha \cos \beta e_1 - \cos \alpha \sin \beta e_2 + \sin \alpha e_3 \right). \tag{3.12}
\]
If \(\gamma \) is Legendre then from (3.12), it is a Legendre helix with \(\kappa = |q| \) and \(\tau = \frac{\lambda}{2} \). If \(\gamma \) is non-Legendre then from (3.12), it is a slant helix with \(\kappa = |q| \sin \alpha \) and \(\tau = \frac{\lambda}{2} + q \cos \alpha \).

If the osculating order is 2, then from (3.12), \(\cos \alpha = -\frac{\lambda}{2q} \). So \(\gamma \) is a circle with \(\kappa = |q| \sin \alpha \) and of constant contact angle \(\alpha = \arccos(-\frac{\lambda}{2q}) \), where \(-\frac{\lambda}{2q} \in [-1, 1] \).

Conversely, assume that \(\gamma \) is a slant helix with \(\kappa = |q| \sin \alpha \) and \(\tau = \frac{\lambda}{2} + q \cos \alpha \), where \(\alpha \) is the contact angle between \(\gamma \) and \(e_3 \). Then \(\cos \alpha = g(T, e_3) \). Hence \(T \) is of the form (3.1). Taking the covariant derivative of (3.1) with respect to \(T \), since \(\alpha \) is a constant, we have
\[
\nabla_T T = \left(\beta' - \lambda \cos \alpha \right) \left[-\sin \alpha \sin \beta e_1 + \sin \alpha \cos \beta e_2 \right] = \kappa N
\]
So we find \(g(e_3, N) = 0 \). Hence \(e_3 \) can be written as
\[
e_3 = \cos \alpha T + \mu B, \tag{3.13}
\]
where \(\mu = \mp \sin \alpha \) is a real constant since \(\|e_3\| = 1 \). By (3.13), by a covariant differentiation, we have
\[
\frac{\lambda}{2} \varphi T = (\tau \mu - \kappa \cos \alpha) N, \tag{3.14}
\]
which gives us
\[
\frac{\lambda^2}{4} g(\varphi T, \varphi T) = \frac{\lambda^2}{4} \sin^2 \alpha = (\tau \mu - \kappa \cos \alpha)^2. \tag{3.15}
\]
Since \(\kappa = |q| \sin \alpha \) and \(\tau = \frac{\lambda}{2} + q \cos \alpha \), from the equation (3.15), we find \(\mu = \text{sgn}(q) \sin \alpha \). Then the equality (3.14) turns into
\[
\varphi T = \text{sgn}(q) \sin \alpha N.
\]
Using Frenet formulas
\[
\nabla_T T = \kappa N = |q| \sin \alpha N = q \varphi T.
\]
Then the Lorentz equation (2.5) is satisfied. Hence \(\gamma \) is a magnetic curve.

If \(\gamma \) is a Legendre helix with \(\kappa = |q| \) and \(\tau = \frac{\lambda}{2q} \), then taking \(\alpha = \frac{\pi}{2} \) in the above case, we have
\[
\varphi T = sgn(q)N
\]
and
\[
\nabla_T^2 = \kappa N = |q| N = q\varphi T,
\]
which means that \(\gamma \) is a magnetic curve.

If \(\gamma \) is a non-Legendre circle with curvature \(\kappa = |q| \sin \alpha \) and of constant contact angle \(\alpha = \arccos(-\frac{\lambda}{2q}) \), then taking \(\tau = 0 \) and \(\cos \alpha = -\frac{\lambda}{2q} \) we have again \(\nabla_T^2 = q\varphi T \). This implies that \(\gamma \) is a magnetic curve.

Then we get the result as required. \(\square \)

4. Explicit Formulas for Magnetic Curves in 3-dimensional Heisenberg Group \(H_3 \)

In [5], R. Caddeo, C. Oniciuc and P. Piu obtained the parametric equations of all non-geodesic biharmonic curves in Heisenberg group \(\text{Nil}_3 \). Using the similar method of [5], we can state a result analogous to [Theorem 3.5, [9]]:

Theorem 4.1. The normal slant magnetic curves on \(H_3 \), described by (2.2) have the parametric equations

\(a) \)
\[
\begin{align*}
x(s) &= \frac{1}{v} \sin \alpha \sin (vs + c) + d_1, \\
y(s) &= -\frac{1}{v} \sin \alpha \cos (vs + c) + d_2, \\
z(s) &= \left(\cos \alpha + \frac{\lambda}{2v} \sin^2 \alpha \right)s - \frac{\lambda}{2v}d_1 \sin \alpha \cos (vs + c) \\
&\quad - \frac{\lambda}{2v}d_2 \sin \alpha \sin (vs + c) + d_3,
\end{align*}
\]
where \(v = \lambda \cos \alpha + q \neq 0 \) and \(c, d_1, d_2, d_3 \) are real numbers and \(\alpha \) denotes the contact angle which is a constant such that \(\alpha \in (0, \pi) \) or

\(b) \)
\[
\begin{align*}
x(s) &= (\sin \alpha \cos c) s + d_4, \\
y(s) &= (\sin \alpha \sin c) s + d_5,
\end{align*}
\]
and
\[
z(s) = \left(-\frac{q}{\lambda} + \frac{\lambda}{2} \sin \alpha (d_4 \sin c - d_5 \cos c) \right)s + d_6,
\]
where \(c, d_4, d_5 \) and \(d_6 \) are real numbers and \(\alpha \) denotes the contact angle which is a constant such that \(\alpha = \arccos(-\frac{q}{\lambda}) \), where \(-\frac{q}{\lambda} \in [-1, 1] \).

Proof. Let \(\gamma(s) = (x(s), y(s), z(s)) \). Then using the equations (2.3), the equation (3.1) can be written as
\[
T = \sin \alpha \cos \beta(s) \left(\frac{\partial}{\partial x} - \frac{\lambda y}{2} \frac{\partial}{\partial z} \right) + \sin \alpha \sin \beta(s) \left(\frac{\partial}{\partial y} + \frac{\lambda x}{2} \frac{\partial}{\partial z} \right) + \cos \alpha \frac{\partial}{\partial z}
\]
(\sin \alpha \cos \beta(s)) \frac{\partial}{\partial x} + (\sin \alpha \sin \beta(s)) \frac{\partial}{\partial y} + \left(\frac{\lambda}{2} x(s) \sin \alpha \sin \beta(s) - \frac{\lambda}{2} y(s) \sin \alpha \cos \beta(s) + \cos \alpha \right) \frac{\partial}{\partial z}, \quad (4.1)

where \beta(s) = (\lambda \cos \alpha + q) s + c. To find the explicit equations, we should integrate the system \(\frac{d\gamma}{ds} = T \). Then using (4.1), we have

\[
\frac{dx}{ds} = \sin \alpha \cos (vs + c),
\]

\[
\frac{dy}{ds} = \sin \alpha \sin (vs + c)
\]

and

\[
\frac{dz}{ds} = \left(\cos \alpha + \frac{\lambda}{2} x(s) \sin \alpha \sin(vs + c) - \frac{\lambda}{2} y(s) \sin \alpha \cos(vs + c) \right),
\]

where \(v = \lambda \cos \alpha + q \).

Assume that \(v \neq 0 \). So the integration of the equations (4.2) and (4.3) gives us

\[
x(s) = \frac{1}{v} \sin \alpha \sin (vs + c) + d_1
\]

and

\[
y(s) = -\frac{1}{v} \sin \alpha \cos (vs + c) + d_2,
\]

where \(d_1 \) and \(d_2 \) are real constants. Then substituting the equations (4.5) and (4.6) in (4.4) we get

\[
\frac{dz}{ds} = \cos \alpha + \frac{\lambda}{2v} \sin^2 \alpha + \frac{\lambda}{2} d_1 \sin \alpha \sin(vs + c) - \frac{\lambda}{2} d_2 \sin \alpha \cos(vs + c).
\]

Hence the solution of the last differential equation gives us

\[
z(s) = \left(\cos \alpha + \frac{\lambda}{2v} \sin^2 \alpha \right) s - \frac{\lambda}{2v} d_1 \sin \alpha \cos(vs + c)
\]

\[
-\frac{\lambda}{2v} d_2 \sin \alpha \sin(vs + c) + d_3,
\]

where \(d_3 \) is a real constant.

Now assume that \(v = \lambda \cos \alpha + q = 0 \). Then \(\alpha = \arccos(-\frac{q}{\lambda}) \), where \(-\frac{q}{\lambda} \in [-1, 1]\). So from (4.2), (4.3) and (4.4), we have

\[
\frac{dx}{ds} = \sin \alpha \cos c,
\]

\[
\frac{dy}{ds} = \sin \alpha \sin c
\]

and

\[
\frac{dz}{ds} = \left(-\frac{q}{\lambda} + \frac{\lambda}{2} x(s) \sin \alpha \sin c - \frac{\lambda}{2} y(s) \sin \alpha \cos c \right). \quad (4.9)
\]

Similar to the solution of the previous case, we find

\[
x(s) = (\sin \alpha \cos c) s + d_4,
\]

\[
y(s) = (\sin \alpha \sin c) s + d_5
\]
and
\[z(s) = \left(-\frac{q}{\lambda} + \frac{\lambda}{2} \sin \alpha \left(d_4 \sin c - d_5 \cos c \right) \right) s + d_6, \]
where \(d_4, d_5 \) and \(d_6 \) are real constants. This completes the proof of the theorem.

\[\square \]

Remark 4.1. For \(\lambda = 1 \), the Heisenberg group \(H_3 \) is frequently referred as the model space \(\text{Nil}_3 \). Hence Theorem 3.1 and Theorem 4.1 can be restated taking \(\lambda = 1 \) for the Nil space \(\text{Nil}_3 \).

Acknowledgements

The author would like to thank the referees for their valuable comments, which helped to improve the manuscript.

References

Cihan Özgür

Department of Mathematics, Balıkesir University, Balıkesir, Turkey.

E-mail address: cozgur@balikesir.edu.tr

Received: March 28, 2017; Revised: August 26, 2017; Accepted: September 15, 2017